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1. Introduction

The attractor mechanism has played an important role in understanding black hole physics

in string theory and has been studied extensively in the past decade. It was initiated in

the context of N = 2 extremal black holes [1] and generalized to more general cases, such

as supersymmetric black holes with higher order corrections [2] and non-supersymmetric

attractors [3 – 5].

Recently, based on Wald’s entropy formula [6], A.Sen proposed an effective method for

calculating the entropy of D-dimensional black holes with near horizon geometry AdS2 ×
SD−2, which is named as “entropy function” method [7]. It states that the entropy of such

kind of black holes can be obtained by extremizing the “entropy function” with respect to

various moduli, where the entropy function is defined as integrating the Lagrangian over

the horizon coordinates and taking the Legendre transformation with respect to the electric

charges. This method has been applied to many specific examples, such as extremal black

holes in higher dimensions, rotating black holes and non-supersymmetric black holes. For

recent developments, see [8]. It is also an useful way to calculate the higher order corrections

to the entropy. In particular, more recently we have shown that for some nonextremal

black holes in string theory, the entropy function method also works quite well [9]. Similar

arguments that concerning entropy function for non-extremal black holes/branes appeared

very recently [10].

It is well known that for black holes in four-dimensional asymptotically flat spacetime,

there exists only one horizon topology S2. But for black holes in five-dimensional spacetime,
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the horizon topology is not unique. A black hole solution with horizon topology S1 × S2,

named as black ring, was presented firstly in [11]. Several important developments are

listed in [12 – 16], where various solutions, the microscopic entropy and relations to other

topics are discussed. For reviews, see [17].

The near horizon geometry of certain black holes and black rings turns out to be

AdS3 × S2. It becomes AdS2 × S2 after dimensional reduction so that one expects the

entropy function formalism also works. Such attempts have been discussed in [18, 21]

and an interesting paper appeared very recently [22], where the entropy function for five-

dimensional extremal black holes and black rings is constructed in the context of two-

derivative gravity coupled to abelian gauge fields and neutral scalar fields, which shows the

validity of the entropy function in a general way.

Since the entropy function method can give the higher order corrections to the en-

tropy conveniently, it is interesting to study the corrections via the entropy function and

compare the results with microscopic calculations. In order to study the higher order cor-

rections to the entropy, we take supersymmetric black rings in U(1)3 supergravity as a

concrete example. Firstly we carry out the analysis using the two-derivative on-shell and

off-shell supergravity, where we make a dimensional reduction so that the resulting action

is gauge and coordinate invariant. We find that the entropy function can reproduce both

the Bekenstein-Hawking entropy and the near horizon geometry, while the correct attractor

values of the moduli fields can also be obtained by extremizing the entropy function. Then

we calculate the R2 corrections to black ring entropy by adding the five-dimensional Gauss-

Bonnet term which originates from R4 terms in M-theory compactified on a Calabi-Yau

manifold as well as supersymmetric R2 completion and compare our results with previous

microscopic considerations.

The rest of the paper is organized as follows. In section 2 we review the supersymmetric

black ring solutions in the U(1)N theory and specialize to the case of N = 3. After

dimensional reduction to four-dimensional spacetime, the entropy function for U(1)3 black

rings is carried out in section 3. The higher order corrections to the entropy are discussed

in section 4. We summarize the results and discuss some related topics in section 5.

2. Supersymmetric black rings in U(1)3 theory

In this section, we review some salient properties of supersymmetric black ring in the U(1)3

theory, which are needed in the following calculations. For more details, see section II and

appendix B of [13].

Consider the case of minimal supergravity coupled to N − 1 Abelian vector multiplets

with scalars taking values in a symmetric space. The action for such a theory is

S =
1

16πG5

∫
(

R ? 1 − GIJdXI ∧ ?dXJ − GIJF I ∧ ?F J − 1

6
CIJKAI ∧ F J ∧ FK

)

, (2.1)

where I, J,K = 1, . . . , N and the constants CIJK are symmetric in (IJK). The N − 1

dimensional scalar manifold is conveniently parameterized by the N scalars XI , which obey

the constraint
1

6
CIJKXIXJXK = 1. (2.2)
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The matrix GIJ is defined by

GIJ ≡ 9

2
XIXJ − 1

2
CIJKXK , (2.3)

where XI ≡ 1
6CIJKXJXK such that XIX

I = 1.

The supersymmetric black ring in U(1)3 theory can be viewed as an eleven-dimensional

supertube carrying three charges and three dipoles after dimensional reduction down to

D = 5 on T 6. The configuration can be summarized as follows:

Q1 M2 : 1 2 − − − − −,

Q2 M2 : − − 3 4 − − −,

Q3 M2 : − − − − 5 6 −,

p1 m5 : − − 3 4 5 6 ψ,

p2 m5 : 1 2 − − 5 6 ψ,

p3 m5 : 1 2 3 4 − − ψ.

(2.4)

Such a configuration can be taken as a solution of D = 11 supergravity with the effective

action

S11 =
1

16πG11

∫
(

R11 ?11 1 − 1

2
F ∧ ?11F − 1

6
F ∧ F ∧ A

)

. (2.5)

The eleven-dimensional solution describing this system takes the form

ds2
11 = ds2

5 + X1(dz2
1 + dz2

2) + X2(dz2
3 + dz2

4) + X3(dz2
5 + dz2

6),

A = A1 ∧ dz1 ∧ dz2 + A2 ∧ dz3 ∧ dz4 + A3 ∧ dz5 ∧ dz6, (2.6)

where zi denote the coordinates along the 123456-directions and A is the three-form po-

tential.

Note that if we reduce the eleven-dimensional action to five-dimensional spacetime on

T 6 using the ansatz 2.6, we will obtain precisely the action 2.1 with N = 3, CIJK = 1 if

(IJK) is a permutation of (123) and CIJK = 0 otherwise, and

GIJ =
1

2
diag[(X1)−2, (X2)−2, (X3)−2]. (2.7)

The resulting five-dimensional black ring solution is characterized by the metric ds2
5, three

scalars Xi, and three one-forms Ai, with field strengths F i = dAi, which are given by

ds2
5 = −(H1H2H3)

−2/3(dt + ω)2 + (H1H2H3)
1/3dx2

4,

Ai = H−1
i (dt + ω) − pi

2
[(1 + y)dψ + (1 + x)dφ],

Xi = H−1
i (H1H2H3)

1/3, (2.8)
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where

dx2
4 =

R2

(x − y)2

[

dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dφ2

]

, (2.9)

H1 = 1 +
Q1 − p2p3

2R2
(x − y) − p2p3

4R2
(x2 − y2),

H2 = 1 +
Q2 − p1p3

2R2
(x − y) − p1p3

4R2
(x2 − y2), (2.10)

H3 = 1 +
Q3 − p1p2

2R2
(x − y) − p1p2

4R2
(x2 − y2), (2.11)

and ω = ωφdφ + ωψdψ with

ωφ = − 1

8R2
(1 − x2)[p1Q1 + p2Q2 + p3Q3 − p1p2p3(3 + x + y)], (2.12)

ωψ =
1

2
(p1 + p2 + p3)(1 + y) − 1

8R2
(y2 − 1)[p1Q1 + p2Q2 + p3Q3 − p1p2p3(3 + x + y)].

Note that the six-torus T 6 has constant volume because X1X2X3 = 1.

The horizon locates at y = −∞ and in order to obtain the near horizon geometry, we

have to take rather complicated coordinate transformations, which are discussed extensively

in appendix D of [13] and here we will not repeat any more. The resulting near horizon

metric is

ds2 =
4L

p
r̃dt̃dψ̃ + L2dψ̃2 +

p2

4

dr̃2

r̃2
+

p2

4
(dθ2 + sin2 θdφ2), (2.13)

where

L ≡ 1
2p2

[

2
∑

i<j
QipiQjpj −

∑

i
Q2

i p
2
i − 4R2p3

∑

i
pi

]

,

Q1 = Q1 − p2p3, Q2 = Q2 − p1p3, Q3 = Q3 − p1p2,

p ≡ (p1p2p3)
1/3. (2.14)

Finally, let t̃ = p2τ/4 and e0 = p/2L, the near horizon metric (2.13) becomes

ds2 =
p2

4
(−r̃2dτ2 +

dr̃2

r̃2
) + L2(dψ̃ + e0r̃dτ)2 +

p2

4
(dθ2 + sin2 θdφ2), (2.15)

which is the product of a locally AdS3 with radius p and a two-sphere of radius p/2. The

Bekenstein-Hawking entropy is

SBH =
A5

4G5
=

2π2Lp2

4G5
. (2.16)

3. The entropy function analysis in four-dimensional spacetime

In this section, we will carry out the analysis of entropy function for supersymmetric black

rings in detail, using both the on-shell and off-shell Lagrangian at two-derivative level.
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3.1 On-shell analysis

In this subsection, we calculate the entropy of supersymmetric black rings in U(1)3 su-

pergravity via the entropy function formalism, which can be seen as a concrete example

of [22]. According to [7], in order to carry out entropy function analysis, the Lagrangian

must be gauge and coordinate invariant. Since the five-dimensional effective action con-

tains a Chern-Simons term, the Lagrangian is not gauge invariant and we have to reduce it

to four dimensions so that the entropy function can be applied. Such analysis was initiated

in [19] and has been followed in [20, 21] and [22].

We take the near horizon field configuration as follows:

ds2
5 = w−1[v1(−r2dt2 + dr2/r2) + v2(dθ2 + sin2 θdφ2)] + w2(dψ + e0rdt)2,

AI
5 = AI

4 + aI(dψ + e0rdt),

F I
5rt = eI + aIe0, F I

4rt = eI , F 0
4rt = e0, F I

5θφ = F I
4θφ =

1

2
pI sin θ,

XI = xI , I = 1, 2, 3. (3.1)

Note that the ψ components of the gauge potential become axions in four-dimensional

spacetime. The entropy function analysis will be processed in four-dimensional spacetime

after dimensional reduction on ψ coordinate. Define

f0 ≡ 1

16π

∫

dθdφ
√−g(L′

0 + L0CS) = f
′

0 + f0CS, (3.2)

where L0CS is the Chern-Simons term down to four dimensions and L′

0 denotes the resulting

Lagrangian coming from the gauge and coordinate invariant terms in the original five-

dimensional supergravity. Throughout the work, the four-dimensional Newton constant is

set to be G4 ≡ 1 so that G5 = 2π.

Note that for a consistent dimensional reduction, the first term in (3.2) can be evaluated

in the original five-dimensional background without writing out the expression for the

reduced action explicitly, what we should pay attention to is the second Chern-Simons

term. In four-dimensional spacetime such a term becomes

1

6
A5 ∧ F5 ∧ F5 = e−1

(

1

6
CIJKaIaJaKF 0

4µνF 0
4λσεµνλσ +

1

4
CIJKaJaKF I

4µνF 0
4λσεµνλσ

+
1

4
CIJKaJaKF 0

4µνF I
4λσεµνλσ +

1

2
CIJKaKF I

4µνF J
4λσεµνλσ

)

,

µ, ν, λ, σ = t, r, θ, φ, I = 1, 2, 3. (3.3)

Next, define

F0 ≡ e0 ∂f0

∂e0
+ eI ∂f0

∂eI
− f0, (3.4)

where F0 is a function of v1, v2, w, aI and xI . Finally, the entropy is given by

SBR = 2πF0 (3.5)
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after extremizing F0 with respect to various moduli and substituting their values back into

F0.

We can obtain the explicit results of L′

0 and L0CS directly by putting the near horizon

field configuration (3.1) into (3.2),

L′

0 =

(

− 2w

v1
+

2w

v2
+

(e0)2w4

2v2
1

)

+
1

2
(xI)−2 w2

v2
1

(eI + aIe0)2 − 1

8
(xI)−2 w2

v2
2

(pI)2,

L0CS = 2e−1 sin θCIJK(e0pIaJaK + eIpJaK). (3.6)

One subtle is that the definition of electric charges will receive modifications in the presence

of Chern-Simons terms. In the usual analysis of entropy function, the electric charges are

defined by qI ≡ ∂f/∂eI . However, when Chern-Simons terms are taken into account,

the corresponding expression gives the so-called “Page charge” introduced in [23], whose

definition is given by

QPage ∼
∫

∗F + A ∧ F. (3.7)

The subsequent calculations are straightforward and the expression for F0 is

F0 =
v2

2
− v1

2
+

p2L4v1

32v2w3
+

1

8
(xI)−2 w2

v2
1

(eI + aIe0)2 +
1

32
(xI)−2 w2

v2
2

(pI)2, (3.8)

where we have replaced e0 by the “true” electric charge q0 ≡ ∂f
′

0/∂e0 = 1
4v−1

1 v2w
3e0. We

can obtain the correct values of the various moduli fields by solving the following equations

∂F0

∂v1
=

∂F0

∂v2
=

∂F0

∂w
= 0,

∂F0

∂xI
=

∂F0

∂aI
= 0. (3.9)

The solutions to the above equations are given as follows

v1 = v2 =
Lp2

4
, w = L, xI =

pI

p
, aI = −eI

e0
, (3.10)

note that the xIs are not independent, subject to the constraint x1x2x3 = 1. Thus we

have obtained the correct near horizon geometry and attractor values of the scalar fields.

Furthermore, we can obtain the entropy by putting all the values back into F ,

SBR = 2πF0 =
πLp2

4
, (3.11)

which reproduces the Bekenstein-Hawking entropy.

3.2 Off-shell analysis

We will calculate the entropy function using the off-shell formalism. One advantage of

the off-shell formalism is that the supersymmetric completion of an R2 term can be re-

alized more conveniently. For simplicity, we just list the basic ingredients of the relevant

supermultiplets briefly. Details for the five-dimensional off-shell supergravity can be found

in [26] and references therein. Similar work has been done in [29], where both the entropy

function formalism and the so-called “c-extremization” [30] are discussed.

– 6 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
7

The irreducible Weyl multiplet, which consists of 32 bosonic plus 32 fermonic compo-

nent fields, contains the following fields

ea
µ, ψi

µ, V ij
µ , bµ, vab, χi, D, (3.12)

where ea
µ are the vielbein, V ij

µ and bµ denote gauge fields associated with the SU(2) gen-

erator and dilatation generator respectively. ψi
µ and χi are SU(2)-Majorana spinors. Note

that vab, χi and D are auxiliary fields, where vab is antisymmetric in a and b and D is a

scalar. The vector multiplet consists of gauge fields AI
µ, scalar fields M I , SU(2)-Majorana

gaugini ΩI and SU(2)-triplet auxiliary fields Y IJ , which can be gauged away.

After gauge fixing, the bosonic terms in the two-derivative Lagrangian of N = 2

supergravity with the Weyl multiplet and nv vector multiplets can be expressed as

L0 = −1

2
D +

3

4
R + v2 + N

(

1

2
D +

1

4
R + 3v2

)

+ 2NIv
abF I

ab

+NIJ

(

1

4
F I

abF
Jab +

1

2
∂aM

I∂aMJ

)

+
1

24
e−1CIJKAI

aF
J
bcF

K
de εabcde, (3.13)

where the functions characterizing the scalar manifold are defined as

N =
1

6
CIJKM IMJMK , NI = ∂IN =

1

2
CIJKMJMK , NIJ = CIJKMK , (3.14)

with I, J,K = 1, . . . , nv. Note that the equation of motion for the auxiliary field D fixes

N = 1, that is, the scalars parametrize the “very special geometry”. The auxiliary fields

vab and D can be eliminated via their equations of motion and the resulting Lagrangian is

the familiar one arising from the compactification of eleven-dimensional supergravity on a

Calabi-Yau manifold with intersection numbers CIJK .

The near horizon field configuration can be taken as follows

ds2 = w−1[v1(−r2dt2 + dr2/r2) + v2(dθ2 + sin2 θdφ2)] + w2(dψ + e0rdt)2,

F I
5rt = eI + e0aI , F I

4rt = eI , F 0
4rt = e0 = p

2L , F I
5θφ = F I

4θφ = 1
2pI sin θ,

M I = mpI , vθφ = V sin θ. (3.15)

The auxiliary fields can be eliminated by solving the equations

∂L0

∂D
= 0,

∂L0

∂V
= 0,

∂L0

∂m
= 0, (3.16)

which gives

D = 12p−2, m = p−1, V = −3

8
p. (3.17)

After substituting (3.17) back in to L0, which gives

L0 =

(

− 2w

v1
+

2w

v2
+

(e0)2w4

2v2
1

)

− 3w2

8v2
2

p2 − 1

2
cIJK(eI + e0aI)(eJ + e0aJ)

pK

p

w2

v2
1

−2e−1 sin θCIJK(e0pIaJaK + eIpJaK). (3.18)

Then the subsequent analysis is similar to the on-shell case discussed in the previous

subsection and the same result will be obtained, which would not be repeated here.
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4. Higher order corrections

In this section we would like to discuss higher order corrections to black ring entropy, which

can be obtained in a similar way by incorporating the higher order corrections into the effec-

tive action. We will use two different actions, one of which is the five-dimensional Gauss-

Bonnet term coming from the compactification of M-theory on a Calabi-Yau three fold

CY3 [25], while the other is a supersymmetric completion of R2 terms in five-dimensional

supergravity proposed recently [26]. We also compare our results with the one obtained

from microscopic considerations.

4.1 5D Gauss-Bonnet corrections

The higher order corrections to the low energy effective action for the compactification of

M-theory on a Calabi-Yau threefold CY3(here is T 6) down to five dimensions takes the

following form

IGB =
1

293π2

∫

d5x
√−gc · X(RαβµνRαβµν − 4RαβRαβ + R2), (4.1)

where c · X = c2IX
I with c2I denoting the components of the second class of CY3. In

principle, we should do dimensional reduction on LGB down to four-dimensional spacetime.

However, as pointed in previous section, such a term can be evaluated in the original five-

dimensional background without the explicit resulting four-dimensional action, for this

term is gauge and coordinate invariant.

Define

f1 ≡ 1

16π

∫

dθdφ
√−gLGB (4.2)

and substitute the five-dimensional near horizon metric in (3.1) into the above expression,

we can arrive at the following result

f1 =
1

3 · 26

c2Ip
I

p
(−8w +

2(e0)2w4

v1
) (4.3)

where the scalar fields XI have been taken their attractor values XI = pI/p. Then we can

redefine F ≡ F0 − f1 in a straightforward way and obtain the corrections to the entropy.

However, it seems that such equations can not give explicit solutions for the moduli fields.

As pointed out in [20], since the entropy is related to the value of F at its extremum,

a first order error in the determination of the near horizon background will give a second

order error in the value of the entropy. Thus if we want to obtain the first order correction

to the entropy, we can find the near horizon background just by extremizing F0 and then

evaluate F in this background. Finally, the entropy is given by

SBH = 2πF, (4.4)

after substituting the values of various moduli fields obtained by extremizing F0. Thus we

can obtain the first order corrections to black ring entropy

∆SBR = −2πf1 =
π

16
c · pL

p
. (4.5)
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4.2 Supersymmetric R2 corrections

One shortcoming of the five-dimensional Gauss-Bonnet Lagrangian is that it is not su-

persymmetric, so several terms relevant to the entropy might be omitted. Fortunately, a

supersymmetric completion of R2 terms in five-dimensional supergravity has been realized

recently in [26] and several relevant applications have been listed in [29]. Thus one can

revisit the higher order corrections by making use of the supersymmetric R2 action.

A particular higher order term has been taken into account in [26] and the super-

symmetric completion has been realized there. The particular term is the so-called mixed

gauge-gravitational Chern-Simons term

eLCS = − c2I

6 · 2AI ∧ Tr(R ∧ R) =
c2I

3 · 16εabcdeA
IaRbcfgRde

fg, (4.6)

with c2I being the expansion coefficients of the second Chern class, which comes from the

anomaly arguments. The four derivative supersymmetric completion of the Chern-Simons

term has been given in [26] and the relevant terms for the calculation are1

L1 =
c2I

3

(

1

16
e−1εabcdeA

IaCbcfgCde
fg +

1

8
M ICabcdCabcd +

1

12
M ID2 +

1

6
F IabvabD

−1

3
M ICabcdv

abvcd − 1

2
F IabCabcdv

cd +
8

3
M IvabD̂bD̂cv

ac

+
4

3
M ID̂avbcD̂avbc +

4

3
M ID̂avbcD̂bvca −

2

3
e−1M Iεabcdev

abvcdD̂fvef

+
2

3
e−1F Iabεabcdev

cdD̂fvef + e−1F Iabεabcdev
c
f D̂dvef

−4

3
F Iabvacv

cdvdb −
1

3
F Iabvabv

2 + 4M Ivabv
bcvcdv

da − M I(vabv
ab)2

)

, (4.7)

with Cabcd the Weyl tensor defined as

Cabcd = Rabcd −
2

3
(ga[cRd]b − gb[cRd]a) +

1

6
Rga[cgd]b. (4.8)

The double covariant derivative of vab is given by

vabD̂bD̂cv
ac = vabDbDcv

ac +
2

3
vacvcbRa

b +
1

12
vabv

abR, (4.9)

where the superconformal derivative is related to the usual derivative as D̂µ = Dµ − bµ.

For our background which satisfies D̂avbc = 0, following [20], the first order corrections

to the black ring entropy can be obtained by substituting (3.10) and (3.17) into

∆
′

SBR = 2πF
′

1 = −2πf
′

1, (4.10)

where

f
′

1 ≡ 1

16π

∫

dθdφ
√−gL1. (4.11)

1The difference in the overall coefficients is due to the different conventions of the five-dimensional

Newton constant.
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The result is

∆
′

SBR =
π

8

c · p
p

L, (4.12)

which shows similar behavior as the Gauss-Bonnet corrections but with different numerical

coefficients.

4.3 Comparison with the microscopic corrections

Now we would like to compare our results with the microscopic entropy obtained in previous

papers [27, 28]. The microscopic corrections reads

∆SBRmic =
π

6
c2 · p

√

q̂0

C
, (4.13)

where2q̂0 denotes the left-moving oscillator number and C is related to the left-moving

central charge cL by cL = 6C. The expressions for the quantities are given as follows

q̂0 = −Jψ +
1

12
CABqAqB +

cL

24
,

= −Jψ +
C

4
+

1

16

(

q1q2

p3
+

q2q3

p1
+

q1q3

p2

)

− 1

256C
((p1q1)

2 + (p2q2)
2 + (p3q3)

2),

CAB = (CABCpC)−1 = (CABCpApBpC)−1,

cL = 6C = 6CABCpApBpC =
3

4
p1p2p3. (4.14)

One can see that

q̂0 =
1

8
L2p, C =

1

8
p3, (4.15)

then

∆SBRmic =
π

6
c · pL

p
, (4.16)

Comparing (4.5) and (4.12) with the above microscopic correction, we can find that all

of them behave similarly up to a numerical constant. Furthermore, the correction obtained

from the supersymmetric completion is more accurate than the Gauss-Bonnet correction,

which means that the former action contains more terms that are necessary in considering

the higher order corrections to black ring solutions.

5. Summary and discussion

In this paper, we have constructed the entropy function for supersymmetric black rings

in U(1)3 theory from both on-shell and off-shell perspectives, which can be seen as a

concrete realization of [22]. We have found that after dimensional reduction down to four-

dimensional spacetime, the effective action is gauge invariant and we can carry out the

entropy function analysis. We have reproduced the Bekenstein-Hawking entropy precisely

and have obtained the correct attractor values of the scalar fields via the entropy function

using both formalisms. Note that when we set Q1 = Q2 = Q3, q1 = q2 = q3, the black ring

2Note that qIthere = 1

4
qIhere, p

I

there = 1

2
p

I

here

– 10 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
7

becomes the solution presented in [12], which implies that the entropy function formalism

can also be applied to those cases.

The higher order corrections to the entropy have also been discussed and two kinds of

corrections have been considered. One is due to the five-dimensional Gauss-Bonnet term

which comes from R4 corrections in eleven-dimensional M-theory compactified on CY3 but

is not supersymmetric itself, while the other arises from a supersymmetric R2 completion

of the five-dimensional supergravity. Unfortunately, we have found that although both of

them can give similar behavior as the microscopic result, the numerical coefficients can

not be reproduced successfully. However, the result obtained via the supersymmetric R2

completion is more accurate than that obtained via the five-dimensional Gauss-Bonnet

term, which means that the former contains more information about the corrections and

there might still be some relevant terms ignored.
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